Dissolved Oxygen

INTRODUCTION

Oxygen gas dissolved in water is vital to the existence of most aquatic organisms. Oxygen is a key component in cellular respiration for both aquatic and terrestrial life. The concentration of dissolved oxygen, DO, in an aquatic environment is an important indicator of the environment’s water quality.

Some organisms, such as salmon, mayflies, and trout, require high concentrations of dissolved oxygen. Other organisms, such as catfish, mosquito larvae, and carp, can survive in environments with lower concentrations of dissolved oxygen. The diversity of organisms is greatest at higher DO concentrations. Table 1 lists the minimum dissolved oxygen concentrations necessary to sustain selected animals.

Oxygen gas is dissolved in water by a variety of processes—diffusion between the atmosphere and water at its surface, aeration as water flows over rocks and other debris, churning of water by waves and wind, and photosynthesis of aquatic plants. There are many factors that affect the concentration of dissolved oxygen in an aquatic environment. These factors include: temperature, stream flow, air pressure, aquatic plants, decaying organic matter, and human activities.

As a result of plant activity, DO levels may fluctuate during the day, rising throughout the morning and reaching a peak in the afternoon. At night photosynthesis ceases, but plants and animals continue to respire, causing a decrease in DO levels. Because large daily fluctuations are possible, DO tests should be performed at the same time each day. Large fluctuations in dissolved oxygen levels over a short period of time may be the result of an algal bloom. While the algae population is growing at a fast rate, dissolved oxygen levels increase. Soon the algae begin to die and are decomposed by aerobic bacteria, which use up the oxygen. As a greater number of algae die, the oxygen requirement of the aerobic decomposers increases, resulting in a sharp drop in dissolved oxygen levels. Following an algal

<table>
<thead>
<tr>
<th>Table 1: Minimum DO Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Trout</td>
</tr>
<tr>
<td>Smallmouth bass</td>
</tr>
<tr>
<td>Caddisfly larvae</td>
</tr>
<tr>
<td>Mayfly larvae</td>
</tr>
<tr>
<td>Catfish</td>
</tr>
<tr>
<td>Carp</td>
</tr>
<tr>
<td>Mosquito larvae</td>
</tr>
</tbody>
</table>

Sources of DO

- Diffusion from atmosphere
- Aeration as water moves over rocks and debris
- Aeration from wind and waves
- Photosynthesis of aquatic plants

Factors that affect DO levels

- Temperature
- Aquatic plant populations
- Decaying organic material in water
- Stream flow
- Altitude/atmospheric pressure
- Human activities
bloom, oxygen levels can be so low that fish and other aquatic organisms suffocate and die. Temperature is important to the ability of oxygen to dissolve, because oxygen, like all gases, has different solubilities at different temperatures. Cooler waters have a greater capacity for dissolved oxygen than warmer waters. Human activities, such as the removal of foliage along a stream or the release of warm water used in industrial processes, can cause an increase in water temperature along a given stretch of the stream. This results in a lower dissolved oxygen capacity for the stream.

Expected Levels

The unit mg/L\(^2\) is the quantity of oxygen gas dissolved in one liter of water. When relating DO measurements to minimum levels required by aquatic organisms, mg/L is used. The procedure described in this chapter covers the use of a Dissolved Oxygen Probe to measure the concentration of DO in mg/L. Dissolved oxygen concentrations can range from 0 to 15 mg/L. Cold mountain streams will likely have DO readings from 7 to 15 mg/L, depending on the water temperature and air pressure. In their lower reaches, rivers and streams can have DO readings between 2 and 11 mg/L.

When discussing water quality of a stream or river, it can be helpful to use a different unit than mg/L. The term percent saturation is often used for water quality comparisons. Percent saturation is the dissolved oxygen reading in mg/L divided by the 100% dissolved oxygen value for water (at the same temperature and air pressure). The manner in which percent saturation relates to water quality is displayed in Table 2. In some cases, water can exceed 100% saturation and become supersaturated for short periods of time.

Summary of Methods

Dissolved oxygen can be measured directly at the site or from water samples transported from the site. Measurements can be made at the site by either placing the Dissolved Oxygen Probe directly into the stream away from the shore or by collecting a water sample with a container or cup and then taking measurements with the Dissolved Oxygen Probe back on the shore. Water samples collected from the site in capped bottles and transported back to the lab must be stored in an ice chest or refrigerator until measurements are to be made. Transporting samples is not recommended, because it reduces the accuracy of test results.

1 Supersaturation can be harmful to aquatic organisms. It can result in a disease known as Gas Bubble Disease.
2 The unit of mg/L is numerically equal to parts per million, or ppm.